Title of article :
GROUPS WITH MINIMAX COMMUTATOR SUBGROUP
Author/Authors :
د جيواني، فرانچسكو نويسنده Dipartimento di Matematica e Applicazioni, Universita di Napoli Federico II, via Cintia, Napoli, Italy de Giovanni, Francesco , تراپبتي، ماركو نويسنده Dipartimento di Matematica e Applicazioni, Universita di Napoli Federico II, via Cintia, Napoli, Italy Trombetti, Marco
Issue Information :
فصلنامه با شماره پیاپی 0 سال 2014
Pages :
8
From page :
9
To page :
16
Abstract :
A result of Dixon, Evans and Smith shows that if G is a locally (soluble-by-finite) group whose proper subgroups are (finite rank)-by-abelian, then G itself has this property, i.e. the commutator subgroup of G has finite rank. It is proved here that if G is a locally (soluble-by-finite) group whose proper subgroups have minimax commutator subgroup, then also the commutator subgroup G0 of G is minimax. A corresponding result is proved for groups in which the commutator subgroup of every proper subgroup has finite torsion-free rank.
Journal title :
International Journal of Group Theory
Serial Year :
2014
Journal title :
International Journal of Group Theory
Record number :
945128
Link To Document :
بازگشت