Title of article :
Proving AGT conjecture as HS duality: Extension to five dimensions Original Research Article
Author/Authors :
A. Mironov، نويسنده , , A. Morozov، نويسنده , , Sh. Shakirov، نويسنده , , A. Smirnov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
24
From page :
128
To page :
151
Abstract :
We extend the proof from Mironov et al. (2011) , which interprets the AGT relation as the Hubbard–Stratonovich duality relation to the case of 5d gauge theories. This involves an additional q-deformation. Not surprisingly, the extension turns out to be straightforward: it is enough to substitute all relevant numbers by q-numbers in all the formulas, Dotsenko–Fateev integrals by the Jackson sums and the Jack polynomials by the MacDonald ones. The problem with extra poles in individual Nekrasov functions continues to exist, therefore, such a proof works only for image, i.e. for image in MacDonaldʼs notation. For image the conformal blocks are related in this way to a non-Nekrasov decomposition of the LMNS partition function into a double sum over Young diagrams.
Keywords :
AGT conjecture , (5d) N=2N=2 SUSY gauge theory , (q-)Virasoro algebra , Seiberg–Witten theory , Matrix models
Journal title :
Nuclear Physics B
Serial Year :
2012
Journal title :
Nuclear Physics B
Record number :
946371
Link To Document :
بازگشت