Title of article :
Topological recursion for chord diagrams, RNA complexes, and cells in moduli spaces Original Research Article
Author/Authors :
J?rgen E. Andersen، نويسنده , , Leonid O. Chekhov، نويسنده , , R.C. Penner، نويسنده , , Christian M. Reidys، نويسنده , , Piotr Su?kowski، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
30
From page :
414
To page :
443
Abstract :
We introduce and study the Hermitian matrix model with potential image, which enumerates the number of linear chord diagrams with no isolated vertices of fixed genus with specified numbers of backbones generated by s and chords generated by t. For the one-cut solution, the partition function, correlators and free energies are convergent for small t and all s as a perturbation of the Gaussian potential, which arises for image. This perturbation is computed using the formalism of the topological recursion. The corresponding enumeration of chord diagrams gives at once the number of RNA complexes of a given topology as well as the number of cells in Riemannʼs moduli spaces for bordered surfaces. The free energies are computed here in principle for all genera and explicitly in genus less than four.
Keywords :
Matrix model , Riemann?s moduli space , RNA , Topological recursion , Chord diagrams
Journal title :
Nuclear Physics B
Serial Year :
2012
Journal title :
Nuclear Physics B
Record number :
946638
Link To Document :
بازگشت