Title of article :
Matrices with maximum kth local exponent in the class of doubly symmetric primitive matrices
Author/Authors :
Shexi Chen، نويسنده , , Bolian Liu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
7
From page :
3386
To page :
3392
Abstract :
Let A be a primitive matrix of order image, and let k be an integer with image. The kth local exponent of image, is the smallest power of A for which there are k rows with no zero entry. We have recently obtained the maximum value for the kth local exponent of doubly symmetric primitive matrices of order n with image. In this paper, we use the graph theoretical method to give a complete characterization of those doubly symmetric primitive matrices whose kth local exponent actually attain the maximum value.
Keywords :
Associated graph , Primitive matrix , Primitive exponent , Extremal matrix , kth local exponent
Journal title :
Discrete Mathematics
Serial Year :
2008
Journal title :
Discrete Mathematics
Record number :
946949
Link To Document :
بازگشت