Title of article :
Multiple extensions of a finite Eulerʹs pentagonal number theorem and the Lucas formulas Original Research Article
Author/Authors :
Victor J.W. Guo and Jiang Zeng، نويسنده , , Jiang Zeng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
10
From page :
4069
To page :
4078
Abstract :
Motivated by the resemblance of a multivariate series identity and a finite analogue of Eulerʹs pentagonal number theorem, we study multiple extensions of the latter formula. In a different direction we derive a common extension of this multivariate series identity and two formulas of Lucas. Finally we give a combinatorial proof of Lucas’ formulas.
Keywords :
Lucas’ formulas , q-Binomial coefficient , q-Chu–Vandermonde formula , Eulerיs pentagonal number theorem
Journal title :
Discrete Mathematics
Serial Year :
2008
Journal title :
Discrete Mathematics
Record number :
947021
Link To Document :
بازگشت