• Title of article

    A Riemann hypothesis analogue for invariant rings Original Research Article

  • Author/Authors

    Tetsuo Harada and Tadashi Hatano، نويسنده , , Makoto Tagami، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2007
  • Pages
    17
  • From page
    2552
  • To page
    2568
  • Abstract
    A Riemann hypothesis analogue for coding theory was introduced by I.M. Duursma [A Riemann hypothesis analogue for self-dual codes, in: A. Barg, S. Litsyn (Eds.), Codes and Association Schemes (Piscataway, NJ, 1999), American Mathematical Society, Providence, RI, 2001, pp. 115–124]. In this paper, we extend zeta polynomials for linear codes to ones for invariant rings, and we investigate whether a Riemann hypothesis analogue holds for some concrete invariant rings. Also we shall show that there is some subring of an invariant ring such that the subring is not an invariant ring but extremal polynomials all satisfy the Riemann hypothesis analogue.
  • Keywords
    Zeta polynomial , Riemann hypothesis analogue , Invariant rings , Extremal codes , MacWilliams transform
  • Journal title
    Discrete Mathematics
  • Serial Year
    2007
  • Journal title
    Discrete Mathematics
  • Record number

    947599