Title of article :
A generalization of Diracʹs theorem on cycles through k vertices in k-connected graphs Original Research Article
Author/Authors :
Evelyne Flandrin، نويسنده , , Hao Li، نويسنده , , Antoni Marczyk، نويسنده , , Mariusz Wo?niak، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
7
From page :
878
To page :
884
Abstract :
Let X be a subset of the vertex set of a graph G. We denote by image the smallest number of vertices separating two vertices of X if X does not induce a complete subgraph of G, otherwise we put image if image and image if image. We prove that if image then every set of at most image vertices of X is contained in a cycle of G. Thus, we generalize a similar result of Dirac. Applying this theorem we improve our previous result involving an Ore-type condition and give another proof of a slightly improved version of a theorem of Broersma et al.
Keywords :
Hamiltonian graphs , Cyclability , Cycles , Graphs
Journal title :
Discrete Mathematics
Serial Year :
2007
Journal title :
Discrete Mathematics
Record number :
947726
Link To Document :
بازگشت