Title of article :
On the convergence of the inverses of Toeplitz matrices and its applications
Author/Authors :
Sun، Feng-Wen نويسنده , , Jiang، Yimin نويسنده , , J.S.، Baras, نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2003
Pages :
-17
From page :
18
To page :
0
Abstract :
Many issues in signal processing involve the inverses of Toeplitz matrices. One widely used technique is to replace Toeplitz matrices with their associated circulant matrices, based on the well-known fact that Toeplitz matrices asymptotically converge to their associated circulant matrices in the weak sense. This often leads to considerable simplification. However, it is well known that such a weak convergence cannot be strengthened into strong convergence. It is this fact that severely limits the usefulness of the close relation between Toeplitz matrices and circulant matrices. Observing that communication receiver design often needs to seek optimality in regard to a data sequence transmitted within finite duration, we define the finite-term strong convergence regarding two families of matrices. We present a condition under which the inverses of a Toeplitz matrix converges in the strong sense to a circulant matrix for finite-term quadratic forms. This builds a critical link in the application of the convergence theorems for the inverses of Toeplitz matrices since the weak convergence generally finds its usefulness in issues associated with minimum mean squared error and the finite-term strong convergence is useful in issues associated with the maximum-likelihood or maximum a posteriori principles.
Keywords :
Patients
Journal title :
IEEE Transactions on Information Theory
Serial Year :
2003
Journal title :
IEEE Transactions on Information Theory
Record number :
94798
Link To Document :
بازگشت