Title of article :
Tight quadrangulations on the sphere
Author/Authors :
Hideo Komuro، نويسنده , , Kiyoshi Ando، نويسنده , , Atsuhiro Nakamoto، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
6
From page :
278
To page :
283
Abstract :
A quadrangulation is a simple graph on the sphere each of whose faces is quadrilateral. A quadrangulation G is said to be tight if each edge of G is incident to a vertex of degree exactly 3. We prove that any two tight quadrangulations with image vertices, not isomorphic to pseudo double wheels, can be transformed into each other, through only tight quadrangulations, by at most image rhombus rotations. If we restrict quadrangulations to be 3-connected, then the number of rhombus rotations can be decreased to image.
Keywords :
Rhombus rotation , Triangulation , Pseudo double wheel , Quadrangulation , Radial graph
Journal title :
Discrete Mathematics
Serial Year :
2006
Journal title :
Discrete Mathematics
Record number :
948178
Link To Document :
بازگشت