Title of article :
Toughness, degrees and 2-factors
Author/Authors :
Ralph J. Faudree، نويسنده , , Ronald J. Gould، نويسنده , , Michael S. Jacobson، نويسنده , , Linda Lesniak، نويسنده , , Akira Saito، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
In this paper we generalize a Theorem of Jung which shows that 1-tough graphs with View the MathML sourceδ(G)⩾|V(G)|-42 are hamiltonian. Our generalization shows that these graphs contain a wide variety of 2-factors. In fact, these graphs contain not only 2-factors having just one cycle (the hamiltonian case) but 2-factors with kk cycles, for any kk such that View the MathML source1⩽k⩽n-164.
Keywords :
Toughness , 2-factor , Cycle , Degrees , Hamiltonian
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics