Title of article :
An improved upper bound for the pebbling threshold of the n-path
Author/Authors :
Adam Wierman، نويسنده , , Julia Salzman، نويسنده , , Michael Jablonski، نويسنده , , Anant P. Godbole، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
7
From page :
367
To page :
373
Abstract :
Given a configuration of t indistinguishable pebbles on the n vertices of a graph G, we say that a vertex v can be reached if a pebble can be placed on it in a finite number of “moves”. G is said to be pebbleable if all its vertices can be thus reached. Now given the n-path Pn how large (resp. small) must t be so as to be able to pebble the path almost surely (resp. almost never)? It was known that the threshold th(Pn) for pebbling the path satisfies n2clg n⩽th(Pn)⩽n22lg n, where lg=log2 and c<1/2 is arbitrary. We improve the upper bound for the threshold function to th(Pn)⩽n2dlg n, where d>1 is arbitrary.
Keywords :
Pebbling number , n-Cycle , Pebbling threshold , n-Path
Journal title :
Discrete Mathematics
Serial Year :
2004
Journal title :
Discrete Mathematics
Record number :
948754
Link To Document :
بازگشت