Title of article :
A condition for a graph to contain k-matching Original Research Article
Author/Authors :
A. Pawel Wojda، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
4
From page :
375
To page :
378
Abstract :
Let k, l, n be nonnegative integers such that 1⩽k⩽n/2, and let G be a graph of order n with the minimum vertex-degree δ(G)⩾l. We prove that if the size e(G) of G verifies e(G)>F(n,k,l)=max{f(n,k,l),f(n,k,k−1)}, where f(n,k,l)=2k−l−12+1(l(n−2k+l+1) then G contains kK2. Moreover, if e(G)=F(n,k,l) and G contains no kK2 then l⩽k−1 and G=K2k−2p−1∗Kp∗K̄n−2k+p+1, where p∈{l,k−1}. We conjecture a similar statement for forests with at most k edges.
Keywords :
Forest , Graph , Matching
Journal title :
Discrete Mathematics
Serial Year :
2004
Journal title :
Discrete Mathematics
Record number :
948786
Link To Document :
بازگشت