Title of article :
Roman domination in graphs Original Research Article
Author/Authors :
Ernie J Cockayne، نويسنده , , Paul A. Dreyer Jr.، نويسنده , , Sandra M. Hedetniemi، نويسنده , , Stephen T. Hedetniemi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
12
From page :
11
To page :
22
Abstract :
A Roman dominating function on a graph G=(V,E) is a function f : V→{0,1,2} satisfying the condition that every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. The weight of a Roman dominating function is the value f(V)=∑u∈Vf(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this paper, we study the graph theoretic properties of this variant of the domination number of a graph.
Keywords :
Graph theory , Domination , Facilities location
Journal title :
Discrete Mathematics
Serial Year :
2004
Journal title :
Discrete Mathematics
Record number :
948791
Link To Document :
بازگشت