Title of article :
Existence of APAV(q,k) with q a prime power ≡5 (mod 8) and k≡1 (mod 4)
Author/Authors :
Kejun Chen، نويسنده , , Zhenfu Cao، نويسنده , , Dianhua Wu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
Stinson introduced authentication perpendicular arrays APAλ(t,k,v), as a special kind of perpendicular arrays, to construct authentication and secrecy codes. Ge and Zhu introduced APAV(q,k) to study APA1(2,k,v) for k=5, 7. Chen and Zhu determined the existence of APAV(q,k) with q a prime power ≡3 (mod 4) and odd k>1. In this article, we show that for any prime power q≡5 (mod 8) and any k≡1 (mod 4) there exists an APAV(q,k) whenever q>((E+E2+4F)/2)2, where E=[(7k−23)m+3]25m−3, F=m(2m+1)(k−3)25m and m=(k−1)/4.
Keywords :
Finite field , Authentication perpendicular array vector , Weilיs theorem , Perpendicular array , Multiplicative character
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics