Title of article :
An infinite family of cubic edge- but not vertex-transitive graphs Original Research Article
Author/Authors :
Aleksander Malni?، نويسنده , , Dragan Maru?i?، نويسنده , , Primo? Poto?nik، نويسنده , , Changqun Wang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
An infinite family of cubic edge- but not vertex-transitive graphs is constructed. The graphs are obtained as regular Zn-covers of K3,3 where n=p1e1p2e2⋯pkek where pi are distinct primes congruent to 1 modulo 3, and ei⩾1. Moreover, it is proved that the Gray graph (of order 54) is the smallest cubic edge- but not vertex-transitive graph.
Keywords :
Lifting automorphisms , Covering protection , Edge-transitive graph , Semisymmetric graph , Gray graph
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics