Title of article :
A partition problem on colored sets
Author/Authors :
Tomoki Nakamigawa، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
6
From page :
405
To page :
410
Abstract :
Let f1 and f2 be functions from a pair of finite sets X1 and X2, respectively, to another finite set Y. We say that f1 and f2 are isomorphic if there exists a permutation σ of Y such that |f1−1(y)|=|f2−1(σ(y))| for any y∈Y. For a function f defined on a finite set X, let r(f) be the smallest nonnegative integer r such that there exists a partition X=X0∪X1∪X2 satisfying (1) f|X1 and f|X2 are isomorphic and (2) |X0|=r. Let k⩾1. We define N(k) as the smallest integer n such that there exists a function f defined on an n-set satisfying r(f)⩾k. It is shown that N(k)=∑i=1kci, where c1=1, c2=3 and ci=ci−1+ci−2+3 for i⩾3.
Keywords :
Ramsey theory , Partition , Golden ratio
Journal title :
Discrete Mathematics
Serial Year :
2003
Journal title :
Discrete Mathematics
Record number :
949110
Link To Document :
بازگشت