• Title of article

    A partition problem on colored sets

  • Author/Authors

    Tomoki Nakamigawa، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    6
  • From page
    405
  • To page
    410
  • Abstract
    Let f1 and f2 be functions from a pair of finite sets X1 and X2, respectively, to another finite set Y. We say that f1 and f2 are isomorphic if there exists a permutation σ of Y such that |f1−1(y)|=|f2−1(σ(y))| for any y∈Y. For a function f defined on a finite set X, let r(f) be the smallest nonnegative integer r such that there exists a partition X=X0∪X1∪X2 satisfying (1) f|X1 and f|X2 are isomorphic and (2) |X0|=r. Let k⩾1. We define N(k) as the smallest integer n such that there exists a function f defined on an n-set satisfying r(f)⩾k. It is shown that N(k)=∑i=1kci, where c1=1, c2=3 and ci=ci−1+ci−2+3 for i⩾3.
  • Keywords
    Ramsey theory , Partition , Golden ratio
  • Journal title
    Discrete Mathematics
  • Serial Year
    2003
  • Journal title
    Discrete Mathematics
  • Record number

    949110