Title of article :
Cycles in hamiltonian graphs of prescribed maximum degree Original Research Article
Author/Authors :
Antoni Marczyk، نويسنده , , Mariusz Wo?niak، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
6
From page :
321
To page :
326
Abstract :
Let G be a hamiltonian graph G of order n and maximum degree Δ, and let C(G) denote the set of cycle lengths occurring in G. It is easy to see that |C(G)|⩾Δ−1. In this paper, we prove that if Δ>n/2, then |C(G)|⩾(n+Δ−3)/2. We also show that for every Δ⩾2 there is a graph G of order n⩾2Δ such that |C(G)|=Δ−1, and the lower bound in case Δ>n/2 is best possible.
Keywords :
Cycles , Hamiltonian graphs , Pancyclic graphs
Journal title :
Discrete Mathematics
Serial Year :
2003
Journal title :
Discrete Mathematics
Record number :
949137
Link To Document :
بازگشت