Title of article :
On neighbors in geometric permutations
Author/Authors :
Micha Sharir، نويسنده , , Shakhar Smorodinsky، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
9
From page :
327
To page :
335
Abstract :
We introduce a new notion of ‘neighbors’ in geometric permutations. We conjecture that the maximum number of neighbors in a set S of n pairwise disjoint convex bodies in Rd is O(n), and we prove this conjecture for d=2. We show that if the set of pairs of neighbors in a set S is of size N, then S admits at most O(Nd−1) geometric permutations. Hence, we obtain an alternative proof of a linear upper bound on the number of geometric permutations for any finite family of pairwise disjoint convex bodies in the plane.
Keywords :
Geometric permutations , Line transversals
Journal title :
Discrete Mathematics
Serial Year :
2003
Journal title :
Discrete Mathematics
Record number :
949195
Link To Document :
بازگشت