• Title of article

    Enumerating a class of lattice paths Original Research Article

  • Author/Authors

    Curtis Coker، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    16
  • From page
    13
  • To page
    28
  • Abstract
    Let D0(n) denote the set of lattice paths in the xy-plane that begin at (0,0), terminate at (n,n), never rise above the line y=x and have step set S={(k,0):k∈N+}∪{(0,k):k∈N+}. Let E0(n) denote the set of lattice paths with step set S that begin at (0,0) and terminate at (n,n). Using primarily the symbolic method (R. Sedgewick, P. Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, Reading, MA, 1996) and the Lagrange inversion formula we study some enumerative problems associated with D0(n) and E0(n).
  • Keywords
    Lattice path , Lagrange inversion formula , Narayana number
  • Journal title
    Discrete Mathematics
  • Serial Year
    2003
  • Journal title
    Discrete Mathematics
  • Record number

    949233