Title of article :
On αrγs(k)-perfect graphs Original Research Article
Author/Authors :
Dieter Rautenbach، نويسنده , , Lutz Volkmann، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
For some integer k⩾0 and two graph parameters π and τ, a graph G is called πτ(k)-perfect, if π(H)−τ(H)⩽k for every induced subgraph H of G. For r⩾1 let αr and γr denote the r-(distance)-independence and r-(distance)-domination number, respectively. In (J. Graph Theory 32 (1999) 303–310), I. Zverovich gave an ingenious complete characterization of α1γ1(k)-perfect graphs in terms of forbidden induced subgraphs. In this paper we study αrγs(k)-perfect graphs for r,s⩾1. We prove several properties of minimal αrγs(k)-imperfect graphs. Generalizing Zverovichʹs main result in (J. Graph Theory 32 (1999) 303–310), we completely characterize α2r−1γr(k)-perfect graphs for r⩾1. Furthermore, we characterize claw-free α2γ2(k)-perfect graphs.
Keywords :
Distance independence number , Distance domination number , Independence , Domination perfect graphs , Domination
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics