Title of article :
Radius-edge-invariant and diameter-edge-invariant graphs Original Research Article
Author/Authors :
H.B. Walikar، نويسنده , , Fred Buckley، نويسنده , , M.K. Itagi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
The eccentricity e(v) of v is the distance to a farthest vertex from v. The radius r(G) is the minimum eccentricity among the vertices of G and the diameter d(G) is the maximum eccentricity. For graph G−e obtained by deleting edge e in G, we have r(G−e)⩾r(G) and d(G−e)⩾d(G). If for all e in G, r(G−e)=r(G), then G is radius-edge-invariant. Similarly, if for all e in G, d(G−e)=d(G), then G is diameter-edge-invariant. In this paper, we study radius-edge-invariant and diameter-edge-invariant graphs and obtain characterizations of radius-edge-invariant graphs and diameter-edge-invariant graphs of diameter two.
Keywords :
Diameter , Edge deletion , Radius
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics