Title of article :
Sperner theory in a difference of Boolean lattices Original Research Article
Author/Authors :
Mark J. Logan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
12
From page :
501
To page :
512
Abstract :
Consider any sets x⊆y⊆{1,…,n}. Remove the interval [x,y]={z⊆y | x⊆z} from the Boolean lattice of all subsets of {1,…,n}. We show that the resulting poset, ordered by inclusion, has a nested chain decomposition and has the normalized matching property. We also classify the largest antichains in this poset. This generalizes results of Griggs, who resolved these questions in the special case x=∅.
Keywords :
Boolean lattice , Antichains , Chain decompositions , Normalized matching property , LYM property
Journal title :
Discrete Mathematics
Serial Year :
2002
Journal title :
Discrete Mathematics
Record number :
949358
Link To Document :
بازگشت