Title of article :
Total domination supercritical graphs with respect to relative complements
Author/Authors :
Teresa W. Haynes، نويسنده , , Michael A. Henning، نويسنده , , Lucas C. van der Merwe، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
11
From page :
361
To page :
371
Abstract :
A set S of vertices of a graph G is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination number γt(G) is the minimum cardinality of a total dominating set of G. Let G be a connected spanning subgraph of Ks,s, and let H be the complement of G relative to Ks,s; that is, Ks,s=G⊕H is a factorization of Ks,s. The graph G is k-supercritical relative to Ks,s if γt(G)=k and γt(G+e)=k−2 for all e∈E(H). Properties of k-supercritical graphs are presented, and k-supercritical graphs are characterized for small k.
Keywords :
Domination , Total domination , Total domination edge critical graphs , Total domination supercritical graphs , Relative complement
Journal title :
Discrete Mathematics
Serial Year :
2002
Journal title :
Discrete Mathematics
Record number :
949390
Link To Document :
بازگشت