• Title of article

    Factor domination and minimum degree Original Research Article

  • Author/Authors

    P. Dankelmann، نويسنده , , R.C. Laskar، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    7
  • From page
    113
  • To page
    119
  • Abstract
    For a graph G=(V,E), a factor F of G is a subgraph of G on the same vertex set, V. A subset S⊆V is a dominating set of G if every vertex v∈V–S is adjacent, in G, to a vertex of S. Let F1,F2,…,Fk be factors of G. A set S⊆V that is, simultaneously, a dominating set of Fi for each i with 1⩽i⩽k is called a factor dominating set of F1,F2,…,Fk. The cardinality of a smallest such set is called the factor domination number of F1,F2,…,Fk and denoted by γ(F1,F2,…,Fk). In this paper, we give bounds on γ(F1,F2,…,Fk) in terms of the minimum degrees of the Fi.
  • Keywords
    Graph , Domination , Factor domination , Minimum degree
  • Journal title
    Discrete Mathematics
  • Serial Year
    2003
  • Journal title
    Discrete Mathematics
  • Record number

    949501