Title of article :
Cyclability and pancyclability in bipartite graphs Original Research Article
Author/Authors :
Mohamed El Kadi Abderrezzak، نويسنده , , Evelyne Flandrin، نويسنده , , Denise Amar، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
9
From page :
3
To page :
11
Abstract :
Let G be a 2-connected bipartite balanced graph of order 2n and bipartition (X,Y). Let S be a subset of X of cardinality at least 3. We define S to be cyclable in G if there exists a cycle through all the vertices of S. Also, G is said S-pancyclable if for every integer l, 3⩽l⩽|S|, there exists a cycle in G that contains exactly l vertices of S. We prove that if the degree sum in G of every pair of nonadjacent vertices (x,y), x∈S, y∈Y is at least n+1, then S is cyclable in G. Under the same assumption where n+1 is replaced by n+3, we also prove that the graph G is S-pancyclable.
Keywords :
Graphs , Cycles , Bipartite graphs
Journal title :
Discrete Mathematics
Serial Year :
2001
Journal title :
Discrete Mathematics
Record number :
949722
Link To Document :
بازگشت