Title of article :
Degree sums and subpancyclicity in line graphs Original Research Article
Author/Authors :
Liming Xiong، نويسنده , , H.J. Broersma، نويسنده , , C. Hoede، نويسنده , , Xueliang Li، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
13
From page :
255
To page :
267
Abstract :
A graph is called subpancyclic if it contains a cycle of length k for each k between 3 and the circumference of the graph. In this paper, we show that if the degree sum of the vertices along each 2-path of a graph G exceeds (n+6)/2, or if the degree sum of the vertices along each 3-path of G exceeds (2n+16)/3, then its line graph L(G) is subpancyclic. Simple examples show that these bounds are best possible. Our results shed some light on the content of a famous Metaconjecture of Bondy.
Keywords :
Subpancyclicity , Degree sum , Path , Line graph
Journal title :
Discrete Mathematics
Serial Year :
2002
Journal title :
Discrete Mathematics
Record number :
949874
Link To Document :
بازگشت