Title of article :
The Lucas property of a number array Original Research Article
Author/Authors :
Marko Razpet، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
12
From page :
157
To page :
168
Abstract :
For all nonnegative integers i,j let w(i,j | a,b,c) denote the number of all paths in the plane from (0,0) to (i,j) with steps (1,0), (0,1), (1,1), and with positive integer weights a, b, c, respectively. The divisibility property of the array w(i,j | a,b,c) is studied. The notation of the Lucas property is introduced. Let p be a prime and let w̄(i,j | a,b,c) denote the remainders of dividing w(i,j | a,b,c) by p where 0⩽w̄(i,j | a,b,c)
Keywords :
Generating function , Divisibility , self-similarity , tensor product , Lattice path , Matrix
Journal title :
Discrete Mathematics
Serial Year :
2002
Journal title :
Discrete Mathematics
Record number :
950029
بازگشت