Title of article :
A lattice path approach to counting partitions with minimum rank
Author/Authors :
Alexander Burstein and Isaiah Lankham، نويسنده , , Sylvie Corteel، نويسنده , , Sara Billey and Alexander Postnikov، نويسنده , , Carla D. Savage، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Abstract :
In this paper, we give a combinatorial proof via lattice paths of the following result due to Andrews and Bressoud: for t⩽1, the number of partitions of n with all successive ranks at least t is equal to the number of partitions of n with no part of size 2−t. The identity is a special case of a more general theorem proved by Andrews and Bressoud using a sieve.
Keywords :
Integer partitions , Lattice paths
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics