Title of article :
Graphs satisfying inequality θ(G2)⩽θ(G)
Author/Authors :
Ilwon Kang، نويسنده , , Suh-ryung Kim، نويسنده , , Yangmi Shin، نويسنده , , Yunsun Nam، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
6
From page :
259
To page :
264
Abstract :
In this paper, we study the edge clique cover number of squares of graphs. More specifically, we study the inequality θ(G2)⩽θ(G) where θ(G) is the edge clique cover number of a graph G. We show that any graph G with at most θ(G) vertices satisfies the inequality. Among the graphs with more than θ(G) vertices, we find some graphs violating the inequality and show that dually chordal graphs and power-chordal graphs satisfy the inequality. Especially, we give an exact formula computing θ(T2) for a tree T.
Keywords :
Edge clique cover number , The square of a graph , Chordal graph
Journal title :
Discrete Mathematics
Serial Year :
2002
Journal title :
Discrete Mathematics
Record number :
950080
Link To Document :
بازگشت