Title of article :
The kissing number of the regular pentagon
Author/Authors :
Likuan Zhao، نويسنده , , Junqin Xu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Abstract :
Let pn be an arbitrary regular polygon with n sides. What is the maximum number k(pn) of congruent regular polygons(copies of pn) that can be arranged so that each touches pn but no two of them overlap? Youngs (Amer. Meth. Monthly 46 (1939) 20), Klamkin et al. (Math Mag. 68 (1995) 128) and others established that k(p3) = 12, k(p4) = 8, and k(p6) = 6. Likuan Zhao (Discrete Math. 188 (1998) 293) established that k(pn) = 6(n>6). In this paper, we will establish k(p5) = 6. Thus we prove the guess in Likuan Zhao and completely solve the kissing numbers of all regular polygons.
Keywords :
Kissing number , Triangle , Regular polygon
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics