Title of article :
Rivest–Vuillemin conjecture is true for monotone boolean functions with twelve variables Original Research Article
Author/Authors :
Sui-Xiang Gao، نويسنده , , Ding-Zhu Du، نويسنده , , Xiao-Dong Hun، نويسنده , , Xiaohua Jia، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
16
From page :
19
To page :
34
Abstract :
A Boolean function f(x1,x2,…,xn) is elusive if every decision tree computing f must examine all n variables in the worst case. It is a long-standing conjecture that every nontrivial monotone weakly symmetric Boolean function is elusive. In this paper, we prove this conjecture for Boolean functions with twelve variables.
Keywords :
Monotone Boolean function , Decision tree , Elusive
Journal title :
Discrete Mathematics
Serial Year :
2002
Journal title :
Discrete Mathematics
Record number :
950131
Link To Document :
بازگشت