Title of article :
Dirac-type characterizations of graphs without long chordless cycles
Author/Authors :
Va?ek Chv?tal، نويسنده , , Irena Rusu، نويسنده , , R. Sritharan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
4
From page :
445
To page :
448
Abstract :
We call a chordless path v1v2…vi simplicial if it does not extend into any chordless path v0v1v2…vivi+1. Trivially, for every positive integer k, a graph contains no chordless cycle of length k+3 or more if each of its nonempty induced subgraphs contains a simplicial path with at most k vertices; we prove the converse. The case of k=1 is a classic result of Dirac.
Keywords :
Triangulated graphs , Induced paths , Forbidden induced cycles
Journal title :
Discrete Mathematics
Serial Year :
2002
Journal title :
Discrete Mathematics
Record number :
950238
Link To Document :
بازگشت