• Title of article

    A note on the ultimate categorical matching in a graph

  • Author/Authors

    Lih-Hsing Hsu، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2002
  • Pages
    2
  • From page
    487
  • To page
    488
  • Abstract
    Let m(G) denote the number of vertices covered by a maximum matching in a graph G. The ultimate categorical matching m∗(G) is defined as m∗(G)=limn→∞ m(Gn)1/n where the categorical graph product is used. In (Discrete Math. 232 (2001) 1), Albert et al. ask that “Is there a graph G, with at least one edge, such that for all graphs H, m∗(G×H) = m∗(G)m∗(H)?”. Actually, m∗(G×H)=m∗(G)m∗(H) holds for any graphs G and H with the previous result of Hsu et al. (Discrete Math. 65 (1987) 53).
  • Keywords
    Graph capacity functions , Matching , Categorical product
  • Journal title
    Discrete Mathematics
  • Serial Year
    2002
  • Journal title
    Discrete Mathematics
  • Record number

    950244