• Title of article

    Higher edge-connectivities and tree decompositions in regular graphs

  • Author/Authors

    A. Gutiérrez، نويسنده , , A.S. Llad?، نويسنده , , S.C. Lopez، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2000
  • Pages
    6
  • From page
    245
  • To page
    250
  • Abstract
    A tree decomposition of a graph G is a family of subtrees whose edge sets partition the edge set of G. The arboricity, a(G), is a trivial lower bound of τ(G), the minimum number of trees in a tree decomposition. We prove that a(G)=τ(G) for all regular graphs of order n and degree d⩾⌊n/2⌋. This bound is best possible. The proof uses higher edge-connectivities, which also provide sufficient conditions for a(G)=τ(G) when d>2n.
  • Journal title
    Discrete Mathematics
  • Serial Year
    2000
  • Journal title
    Discrete Mathematics
  • Record number

    950356