Title of article :
Quadratic modulo 2n Cayley graphs Original Research Article
Author/Authors :
Reinaldo E. Giudici، نويسنده , , Aurora A. Olivieri، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
A family of simple, finite, undirected and without loops Cayley graphs Cay (Z2n,QR∗(2n)) is studied, where Z2n denotes the additive group of integers modulo 2n and the set S∗=S∪{−S}, where S=QR∗(2n) denotes the set of quadratic residues of Z2n, zero excluded. In this paper we show that the diameter of the Cayley graphs Cay (Z2n,QR∗(2n)) is 2 and we give recursive formulae for the number of triangles in the graph. In addition, we discuss the number of k-residues modulo pn, p prime and n⩾1.
Keywords :
p a prime number , k-residues modulo pn , Orbits of a group , Simple , Finite , Quadratics residues modulo 2n , undirected and without loops Cayley graphs , Triangles of a graph , Cayley graphs , Additive group of integer modulo 2n , Diameter of a graph
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics