Title of article :
Remarks on Bárányʹs theorem and affine selections
Author/Authors :
Mircea Balaj، نويسنده , , Kazimierz Nikodem، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
5
From page :
259
To page :
263
Abstract :
Using the ‘multiplied’ version of Hellyʹs theorem given by Bárány (Discrete Math. 40 (1982) 141–152) we generalize some selection and separation results obtained in Behrends and Nikodem (Studia Math. 116 (1) (1995) 43–48), Nikodem and Wa̧sowicz (Aequationes Math. 49 (1995) 160–164) and Wa̧sowicz (J. Appl. Anal. 1 (2) (1995) 173–179). In particular, it is shown that if three set-valued functions Φ1,Φ2,Φ3:I→cc(R) satisfy the condition Φi(tx+(1−t)y)∩[tΦj(x)+(1−t)Φk(y)]≠∅ for all x,y∈I,t∈[0,1] and every permutation (i,j,k) of the set {1,2,3} then at least one of them has an affine selection.
Keywords :
Affine functions , Helly-type theorems , set-valued functions , Selections , Separation
Journal title :
Discrete Mathematics
Serial Year :
2000
Journal title :
Discrete Mathematics
Record number :
950591
Link To Document :
بازگشت