Abstract :
Let $R$ be a ring, $M$ a
right $R$-module and $(S,\leq)$ a strictly ordered monoid. In this
paper we will show that if $(S,\leq)$ is a strictly ordered monoid
satisfying the condition that $0\leq s$ for all $s\in S$, then the
module $[[M^{S,\leq}]]$ of generalized power series is a uniserial
right $[[R^{S,\leq}]]$-module if and only if $M$ is a simple right
$R$-module and $S$ is a chain monoid.