Title of article :
On the Fischer-Clifford matrices of a maximal subgroup of the Lyons group Ly
Author/Authors :
Moori، Jamshid نويسنده University of North West(Mafeking), , , Seretlo، T. نويسنده University of North West(Mafeking), ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2013
Abstract :
The non-split extension group $\overline{G} = 5^3{^.}L(3,5)$ is a
subgroup of order $46500000$ and of index $1113229656$ in $Ly$. The
group $\overline{G}$ in turn has $L(3,5)$ and $5^2{:}2.A_5$ as
inertia factors. The group $5^2{:}2.A_5$ is of order $3 000$ and is
of index $124$ in $L(3,5)$. The aim of this paper is to compute the
Fischer-Clifford matrices of $\overline{G}$, which together with
associated partial character tables of the inertia factor groups,
are used to compute a full character table of $\overline{G}$. A
partial projective character table corresponding to $5^2{:}2A_5$ is
required, hence we have to compute the Schur multiplier and
projective character table of $5^2{:}2A_5$.
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society