Title of article
On the minimum length of quaternary linear codes of dimension five Original Research Article
Author/Authors
Ivan N. Landjev، نويسنده , , Tatsuya Maruta، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1999
Pages
17
From page
145
To page
161
Abstract
Let nq(k, d) be the smallest integer n for which there exists a linear code of length n, dimension k and minimum distance d, over the q-element field. In this paper we prove the nonexistence of quaternary linear codes with parameters [190,5,141], [239,5,178], [275,5,205], [288,5,215], [291,5,217] and [488,5,365]. This gives an improved lower bound of n4(5, d) for d = 141,142 and determines the exact value of n4(5,d) for d = 178, 205, 206, 215, 217, 218, 365, 366, 367, 368. The updated table of n4(5,d) is also given.
Keywords
Quaternary linear codes , Minimum length bounds , Minihypers
Journal title
Discrete Mathematics
Serial Year
1999
Journal title
Discrete Mathematics
Record number
950834
Link To Document