Title of article :
Restrained domination in graphs Original Research Article
Author/Authors :
Gayla S. Domke، نويسنده , , Johannes H. Hattingh، نويسنده , , Stephen T. Hedetniemi، نويسنده , , Renu C. Laskar، نويسنده , , Lisa R. Markus، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
9
From page :
61
To page :
69
Abstract :
In this paper, we initiate the study of a variation of standard domination, namely restrained domination. Let G=(V,E) be a graph. A restrained dominating set is a set S⊆V where every vertex in V−S is adjacent to a vertex in S as well as another vertex in V−S. The restrained domination number of G, denoted by γr(G), is the smallest cardinality of a restrained dominating set of G. We determine best possible upper and lower bounds for γr(G), characterize those graphs achieving these bounds and find best possible upper and lower bounds for γr(G)+γr(G) where G is a connected graph. Finally, we give a linear algorithm for determining γr(T) for any tree and show that the decision problem for γr(G) is NP-complete even for bipartite and chordal graphs.
Journal title :
Discrete Mathematics
Serial Year :
1999
Journal title :
Discrete Mathematics
Record number :
950851
Link To Document :
بازگشت