Title of article :
Minimal zero-sequences and the strong Davenport constant Original Research Article
Author/Authors :
Scott T. Chapman، نويسنده , , Michael Freeze، نويسنده , , William W. Smith، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
7
From page :
271
To page :
277
Abstract :
Let G be a finite Abelian group and U(G) the set of minimal zero-sequences on G. If M1 and M2∈U(G), then set M1∼M2 if there exists an automorphism ϕ of G such that ϕ(M1)=M2. Let O(M) represent the equivalence class of M under ∼. In this paper, we consider problems related to the size of an equivalence class of sequences in U(G) and also examine a stronger form of the Davenport constant of G.
Keywords :
Minimal zero-sequence , Zero-sum problems
Journal title :
Discrete Mathematics
Serial Year :
1999
Journal title :
Discrete Mathematics
Record number :
950867
Link To Document :
بازگشت