Title of article :
On a class of prime-detecting congruences Original Research Article
Author/Authors :
Temba Shonhiwa، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
12
From page :
357
To page :
368
Abstract :
Gould (The Fibonacci Quarterly 2 (1964) 241–260) proved the general inversion theorem: for any ordered sequence pair (f(n, k), g(n, k)) ƒ(n,k)=∑j=kng(n,j)R(j,k) if and only if g(n,k)=∑j=knƒ(n,j)A(j,k) where R(n, k) is the number of compositions of n ⩾ 1 into k relatively prime parts and A(n,k)=∑j=kn(-1)n−jnj[jk] is its inverse. In this paper, we obtain a variety of such ordered inversion pairs. Further, we give necessary and sufficient conditions for the congruence f(n, k)  g(n, k) (mod k) to hold, in particular criteria for k ⩾ 2 to be a prime when the congruence holds for all n ⩾ 1.
Journal title :
Discrete Mathematics
Serial Year :
1999
Journal title :
Discrete Mathematics
Record number :
950891
Link To Document :
بازگشت