Title of article :
Near-complete multipartite graphs and forbidden induced subgraphs Original Research Article
Author/Authors :
Igor E. Zverovich، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
6
From page :
257
To page :
262
Abstract :
A proper vertex k-coloring C1,C2,…,Ck of a graph G is called l-bounded (l⩾0) if |Ci⧹N(u)|⩽l for each i=1,2,…,k and each vertex u∈VG⧹Ci, where N(u) is the neighborhood of u. Let C(k,l) be the class of all graphs having an l-bounded k-coloring (k⩾1 and l⩾0). We prove that every class C(k,l) has a finite forbidden induced subgraph characterization. This result implies the existence of polynomial algorithms for recognition of C(k,l). The set of all 14 minimal forbidden induced subgraphs for C(3,1) is found.
Keywords :
Forbidden induced subgraphs , Hereditary classes , Vertex coloring
Journal title :
Discrete Mathematics
Serial Year :
1999
Journal title :
Discrete Mathematics
Record number :
950955
Link To Document :
بازگشت