Title of article
On the optimal parameter choice for (nu)-support vector machines
Author/Authors
I.، Steinwart, نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2003
Pages
-1273
From page
1274
To page
0
Abstract
We determine the asymptotically optimal choice of the parameter (nu) for classifiers of (nu)-support vector machine ((nu)-SVM) type which has been introduced by Scholkopf et al. (2000). It turns out that (nu) should be a close upper estimate of twice the optimal Bayes risk provided that the classifier uses a so-called universal kernel such as the Gaussian RBF kernel. Moreover, several experiments show that this result can be used to implement some modified cross validation procedures which improve standard cross validation for (nu)-SVMs.
Keywords
developable surface , Physical optics , electromagnetic scattering , radar backscatter
Journal title
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Serial Year
2003
Journal title
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Record number
95100
Link To Document