Title of article :
The pebbling number of C5 × C5 Original Research Article
Author/Authors :
David S. Herscovici، نويسنده , , Aparna W. HigginsDavid S. Herscovici، نويسنده , , Aparna W. Higgins، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
13
From page :
123
To page :
135
Abstract :
Chung has defined a pebbling move on a graph G to be the removal of two pebbles from one vertex and the addition of one pebble to an adjacent vertex. The pebbling number f(G) of a connected graph is the least number of pebbles such that any distribution of f(G) pebbles on G allows one pebble to be moved to any specified, but arbitrary vertex. Graham conjectured that for any connected graphs G and H, f(G × H)⩽ f(G)f(H). We show that Grahamʹs conjecture holds when G = H = C5.
Journal title :
Discrete Mathematics
Serial Year :
1998
Journal title :
Discrete Mathematics
Record number :
951071
Link To Document :
بازگشت