Title of article :
Steep polyominoes, q-Motzkin numbers and q-Bessel functions Original Research Article
Author/Authors :
E. Barcucci، نويسنده , , A. Del Lungo، نويسنده , , J.M. Fedou، نويسنده , , R. Pinzani، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
22
From page :
21
To page :
42
Abstract :
We introduce three definitions of q-analogs of Motzkin numbers and illustrate some combinatorial interpretations of these q-numbers. We relate the first class of q-numbers to the generating function for steep parallelogram polyominoes according to their width, perimeter and area. We show that this generating function is the quotient of two q-Bessel functions. The second class of q-Motzkin numbers counts the steep staircase polyominoes according to their area, while the third one enumerates the inversions of steep Dyck words. These enumerations allow us to illustrate various techniques of counting and q-counting.
Keywords :
q-analogs , Polyominoes , Words and q-Bessel functions , Motzkin numbers
Journal title :
Discrete Mathematics
Serial Year :
1998
Journal title :
Discrete Mathematics
Record number :
951118
Link To Document :
بازگشت