Title of article :
Bandwidth and density for block graphs Original Research Article
Author/Authors :
Le Tu Quoc Hung، نويسنده , , Maciej M. Syslo، نويسنده , , Margaret L. Weaver، نويسنده , , Douglas B. West، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
14
From page :
163
To page :
176
Abstract :
The bandwidth of a graph G is the minimum of the maximum difference between adjacent labels when the vertices have distinct integer labels. We provide a polynomial algorithm to produce an optimal bandwidth labeling for graphs in a special class of block graphs (graphs in which every block is a clique), namely those where deleting the vertices of degree one produces a path of cliques. The result is best possible in various ways. Furthermore, for two classes of graphs that are ‘almost’ caterpillars, the bandwidth problem is NP-complete.
Keywords :
Caterpillar , Bandwidth , Labeling , density , Block graph
Journal title :
Discrete Mathematics
Serial Year :
1998
Journal title :
Discrete Mathematics
Record number :
951128
Link To Document :
بازگشت