• Title of article

    Bandwidth and density for block graphs Original Research Article

  • Author/Authors

    Le Tu Quoc Hung، نويسنده , , Maciej M. Syslo، نويسنده , , Margaret L. Weaver، نويسنده , , Douglas B. West، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1998
  • Pages
    14
  • From page
    163
  • To page
    176
  • Abstract
    The bandwidth of a graph G is the minimum of the maximum difference between adjacent labels when the vertices have distinct integer labels. We provide a polynomial algorithm to produce an optimal bandwidth labeling for graphs in a special class of block graphs (graphs in which every block is a clique), namely those where deleting the vertices of degree one produces a path of cliques. The result is best possible in various ways. Furthermore, for two classes of graphs that are ‘almost’ caterpillars, the bandwidth problem is NP-complete.
  • Keywords
    Caterpillar , Bandwidth , Labeling , density , Block graph
  • Journal title
    Discrete Mathematics
  • Serial Year
    1998
  • Journal title
    Discrete Mathematics
  • Record number

    951128