Title of article :
A combinatorial interpretation of the recurrence fn+1 = 6fn − fn−1
Author/Authors :
E. Barcucci، نويسنده , , S. Brunetti، نويسنده , , A. Del Lungo، نويسنده , , A. Del Lungo and F. Del Ristoro، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
6
From page :
235
To page :
240
Abstract :
Bonin et al. (1993) recalled an open problem related to the recurrence relation verified by NSW numbers. The recurrence relation is the following: fn+1 = 6fn − fn−1, with f1 = 1 and f2 = 7, and no combinatorial interpretation seems to be known. In this note, we define a regular language L whose number of words having length n is equal to fn+1. Then, by using ℒ we give a direct combinatorial proof of the recurrence.
Keywords :
NSW numbers , recurrence relation , Combinatorial interpretation , Regular language
Journal title :
Discrete Mathematics
Serial Year :
1998
Journal title :
Discrete Mathematics
Record number :
951158
Link To Document :
بازگشت