• Title of article

    Alternating walks in partially 2-edge-colored graphs and optimal strength of graph labeling

  • Author/Authors

    AndréE. Kézdy، نويسنده , , Chi Wang، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1999
  • Pages
    5
  • From page
    261
  • To page
    265
  • Abstract
    A graph is partially 2-edge-colored if edges of G are colored by two colors, possibly with some edges uncolored. A walk is alternating in a partially 2-edge-colored graph if the given 2-edge-coloring can be extended to all edges of G such that colors alternate as the walk is traversed. We present a polynomial-time algorithm to decide, given a partially 2-edge-colored graph and two distinct vertices, whether there is an alternating walk connecting the two vertices. We apply the algorithm to solve problems in graph labeling. In particular, we show that the regularizable strength of a graph can be determined in polynomial time.
  • Journal title
    Discrete Mathematics
  • Serial Year
    1999
  • Journal title
    Discrete Mathematics
  • Record number

    951256