Title of article :
On the existence of (k, l)-critical graphs
Author/Authors :
Tibor Jord?n، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
3
From page :
273
To page :
275
Abstract :
Let W ⊆ V in a graph G = (V, E) such that W ∩ X ≠ Ø for each fragment X of G. Then G is defined to be W-locally (k, l)-critical if κ(G − W′) = k − W′ holds for every W′ ⊆ W with. In this note we give a short proof for the following recent result of Su: every non-complete W-locally (k, l)-critical graph has (2l + 2) distinct ends and bW⩾ 2l + 2. (This result implies that Slaterʹs conjecture is true: there exist no (k, l)-critical graphs with 2l > k, except Kk + 1.)
Journal title :
Discrete Mathematics
Serial Year :
1998
Journal title :
Discrete Mathematics
Record number :
951363
Link To Document :
بازگشت